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Abstract: Fuzzy soft sets is an extension of traditional soft sets that incorporates fuzzy logic, 

which provides a robust framework to handle imprecision and uncertainty in decision-making 

systems. Within the framework, several algorithms have been developed to handle parameter 

reduction and decision-making challenges, with each providing unique methodologies and 

applications. Despite this prominence, systematic review which covers the different aspects of 

studies on parameter reduction and decision-making algorithms is largely lacking. Hence, this 

study presents a comprehensive analysis of existing algorithms for parameter reduction and 

decision-making in fuzzy soft sets. The paper classifies, discuss, and evaluates key methods in 

terms of their computational efficiency, applicability, and effectiveness in decision support. 

Our findings underscore the strengths and limitations of current approaches and suggest 

avenues for future research aimed at enhancing the efficiency and applicability of fuzzy soft 

set algorithms in complex decision-making scenarios.  
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1. Introduction 

In data analysis and decision-making, uncertainty and vagueness 

are often inherent (Abdu et al., 2024). Traditional models struggle 

to address these ambiguities effectively, prompting the 

development of a hybrid approach combining soft set theory with 

fuzzy logic called fuzzy soft sets (Denoeux, 2023). Fuzzy soft sets 

allow for greater flexibility and are widely used in decision support 

systems, where accurate data representation and optimal decision-

making are crucial (Beyza EKEN, 2022). Two major challenges in 

the practical application of fuzzy soft sets are parameter reduction 

and decision-making (Hassouneh, 2022). Parameter reduction 

simplifies the data, removing redundancy and focusing on essential 

parameters, while decision-making algorithms help identify 

optimal solutions based on multiple criteria (He, 2023).  

Molodtsov defines the soft set theory as a tuple which is associated 

with a set of parameters and a mapping from a parameter set onto 

the power set of a universal set, unlike existing mathematical 

theories for dealing with uncertainties such as probability theory 

(Kolmogorov, 1950), Fuzzy set theory (Zadeh, 1965), intuitionistic 

fuzzy set theory (K. T. Atanassov, 1986), Rough set theory 

(Pawlak, 1982), vague set (Gau & Buehrer, 1993), grey set theory 

(Julong, 1989).  Although the soft set has parameterization tool, it 

requires hybridization in cases involving non-Boolean datasets 

which could establish larger paradigms, so that any parameter can 

be chosen. This explain the decision-making process and compose 

the procedure more proficient from available data. A major 

advantage of fuzzy soft set theory is its lack of requirement for 

additional data information (e.g. the probability in statistic or 

possibility value in fuzzy set theory).  

Parameter reduction and decision-making problems in soft set 

theory are interesting areas been explored by researchers in recent 

times. However, a review that summarizes advances in the 

applications of soft set theory in parameter reduction is scarce in 

the literature. 

2. Parameter Reduction in Fuzzy Soft Sets 

Parameter reduction aims to eliminate redundant or insignificant 

parameters, thus simplifying the decision-making process while 

preserving the quality of the original data (Huang, 2022). Key 

algorithms in this area include: 

2.1. Greedy Algorithms for Parameter Reduction 

Greedy algorithms are a class of algorithms that make locally 

optimal choices at each stage with the hope of finding a global 

https://isarpublisher.com/journal/isarjst
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optimum (Mesquita, 2022). In the context of parameter reduction, 

greedy algorithms play a crucial role in simplifying models, 

improving computational efficiency, and enhancing interpretability 

without significantly compromising performance. Parameter 

reduction aims to minimize the number of parameters in a system 

or model while retaining its essential properties or performance 

(GlobalNewswire, 2018). Greedy algorithms achieve this by 

iteratively selecting or removing parameters based on predefined 

criteria, such as importance, correlation, or contribution to a 

specific objective function (Kohavi & John, 1997). The key 

characteristic of greedy algorithms is their focus on short-term 

gains, which may or may not lead to globally optimal solutions. 

In machine learning, greedy algorithms are commonly used for 

feature selection, where irrelevant or redundant features are 

removed to improve model performance (Jiarpakdee et al., 2021). 

Algorithms like forward selection, backward elimination, and 

stepwise regression are examples of greedy approaches that 

evaluate parameters one at a time based on metrics like accuracy, 

information gain, or mutual information (Guyon & Elisseeff, 

2003). Greedy approaches are also used in dimensionality 

reduction techniques like Principal Component Analysis (PCA) 

and feature subset selection (Cai et Al, 2023). By iteratively 

removing or combining dimensions, these methods retain the most 

significant features while reducing computational overhead 

(Jolliffe, 2002). Kohavi and John (1997) demonstrated the 

effectiveness of greedy algorithms in feature subset selection, 

leading to significant improvements in classification accuracy 

while reducing the computational cost. 

2.2. Entropy-Based Parameter Reduction 

Entropy-based parameter reduction is a technique that applies 

concepts from information theory to minimize the complexity of 

data representations, particularly in systems or models requiring 

parameter optimization (Al-Jamimi., 2024). Entropy, a measure of 

uncertainty or randomness in a dataset, provides a quantitative 

basis for identifying and discarding irrelevant or redundant 

parameters. Introduced by Shannon (1948), entropy quantifies the 

amount of information contained in a dataset. High entropy implies 

greater uncertainty or variability, whereas low entropy suggests 

redundancy or predictability in the data. In parameter reduction, 

the goal is to identify parameters with low entropy that contribute 

minimal unique information to the system, allowing for their 

removal without significant loss of predictive power or 

performance (Tantithamthavorn, 2018). 

Advancements in entropy-based methods are focused on 

integrating non-linear measures of dependency and developing 

adaptive thresholding techniques to improve the accuracy and 

efficiency of parameter reduction processes. Additionally, hybrid 

approaches that combine entropy-based methods with machine 

learning algorithms are gaining traction for their ability to balance 

computational efficiency with predictive accuracy. Figure 1 depicts 

the trend of research that employed entropy-based reduction 

approach covered from 2014 to 2024. 

 

Figure 1: Entropy-based approach 

The bar chart illustrating the number of entropy-based research 

studies conducted each year. The chart shows a spike in research in 

2024, indicating increased activity in this area during that period. 

2.3. Correlation-Based Reduction 

Correlation-Based Reduction (CBR) is a dimensionality reduction 

technique aimed at simplifying data while preserving essential 

relationships among variables (Khurma et al., 2021). This method 

leverages the statistical property of correlation to identify 

redundant or irrelevant features in datasets, which often impede the 

performance of machine learning algorithms (Ayon, 2019). By 

eliminating or merging highly correlated variables, CBR enhances 

computational efficiency, improves model interpretability, and 

reduces overfitting risks (Alsaeedi & Khan, 2019). 

Correlation quantifies the linear relationship between two 

variables, often measured using Pearson's correlation coefficient, 

Spearman's rank correlation, or Kendall's tau (Agrawal, 2020). 

Features with high correlation share significant information, 

leading to redundancy in the dataset. For instance, in software 

defect prediction datasets, metrics such as lines of code (LOC) and 

cyclomatic complexity often exhibit high correlation, making one 

of these metrics redundant for modeling purposes (Zhang et al., 

2022). 

 

Figure 2: Number of Correlation and Data reduction on yearly 

Distribution 

The bar chart illustrating the number of correlation and data 

reduction research studies conducted each year. The chart shows a 

noticeable increase in 2024, indicating heightened research activity 

in this area during that period. 

Correlation-Based Reduction is a powerful tool in data 

preprocessing, particularly in high-dimensional datasets. Its ability 

to streamline features while preserving critical information makes 



ISAR J Sci Tech; Vol-3, Iss-2, 2025 

 

18 
 

it indispensable in various fields, from software engineering to 

healthcare analytics. However, its success depends on careful 

implementation, including appropriate threshold selection and 

validation to ensure model performance remains robust. 

2.4. Hybrid Reduction Methods 

Hybrid reduction methods integrate multiple dimensionality 

reduction techniques to effectively reduce the complexity of high-

dimensional data while retaining critical features (Anju & Judith, 

2023). These methods address the limitations of single-method 

approaches, which might overlook important data characteristics or 

fail to handle diverse data types efficiently (Parashar et al., 2022). 

By combining the strengths of different techniques, hybrid 

reduction methods improve performance in tasks such as 

classification, clustering, and prediction. 

Hybrid methods are widely used in gene expression analysis, 

where datasets are often high-dimensional and sparse. Combining 

feature selection with PCA or LDA helps to identify biomarkers 

while maintaining computational efficiency (Feng, 2022). In 

software prediction, hybrid methods improve model accuracy by 

reducing redundant and irrelevant software metrics while 

preserving critical defect-related features (Abdu et al., 2024). For 

instance, a combination of mutual information for feature selection 

and autoencoders for feature extraction has shown promising 

results. 

Hybrid methods are also positive in handling textual and visual 

data, where dimensionality is a significant challenge. Combining 

term frequency-inverse document frequency (TF-IDF) with deep 

learning-based embeddings can enhance classification accuracy 

(Mustaqeem et al., 2024). 

3. Decision-Making in Fuzzy Soft Sets 

Decision-making in fuzzy soft sets often involves scenarios where 

data uncertainty and vagueness necessitate systematic approaches 

to aggregate and evaluate the information (Denoeux, 2023). 

Weighted aggregation methods provide an essential mechanism in 

this process, offering a structured way to combine multiple criteria, 

each with a corresponding weight, to derive meaningful decisions. 

Decision-making in fuzzy soft sets focuses on identifying the best 

option based on selected parameters. Prominent algorithms 

include: 

3.1. Weighted Aggregation Methods 

Weighted aggregation methods are a class of techniques used to 

merge individual criteria evaluations into a single, comprehensive 

assessment (Osman et al., 2023). These methods account for the 

relative importance (weights) assigned to each criterion, reflecting 

its contribution to the overall decision. In fuzzy soft sets, weighted 

aggregation methods deal with fuzzy parameters, which are 

represented as fuzzy values characterized by a degree of 

membership ranging between 0 and 1. Each parameter in a fuzzy 

soft set is associated with a membership function that maps 

elements to values in [0,1] (Beyza EKEN, 2022). The membership 

value indicates the degree to which an element satisfies a particular 

criterion. Weights are assigned to parameters to reflect their 

relative importance in the decision-making process (Mafarja, 

2023). Weight values are usually normalized such that the sum of 

all weights equals 1:  

 

Where: 

wi: The weight assigned to the iii-th parameter. 

n: The total number of parameters. 

The weights wi are normalized, ensuring that their sum equals 1. 

This reflects to their relative importance in the decision-making 

processes.Weighted aggregation methods rely on specific operators 

to combine parameter values based on their weights. Commonly 

used operators include: 

 

Where: 

wi: is the weight of the i-th criterion. 

μi(x): is the membership value of element x for the i-th 

criterion 

A(x): represents the aggregated value for x 

 

The equation calculates a weighted sum of the membership values 

for each criterion, using their respective weights. Overall 

performance score is then calculated as the product of the criteria 

values raised to the power of their respective weights, capturing the 

multiplicative interaction among the criteria. 

 

 

3.2. Technique for Order of Preference by Similarity to 

Ideal Solution (TOPSIS) 

The Technique for Order of Preference by Similarity to Ideal 

Solution (TOPSIS) is a widely recognized multi-criteria decision-

making (MCDM) method (Zhou Xu, 2021). It was first introduced 

by Hwang and Yoon in 1981 to rank alternatives based on their 

geometric distance from an ideal solution and a nadir (anti-ideal) 

solution. TOPSIS is known for its simplicity, logical approach, and 

ability to provide a clear ranking of alternatives, making it a 

popular tool in fields such as engineering, finance, healthcare, and 

supply chain management (Hwang & Yoon, 1981). The technique 

is based on the principle that the chosen alternative should have the 

shortest distance from the positive ideal solution (PIS) and the 

longest distance from the negative ideal solution (NIS). 
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TOPSIS is a robust and versatile MCDM tool that balances 

proximity to the ideal solution with separation from the worst-case 

scenario. Its adaptability and logical foundation make it a preferred 

choice for decision-making across diverse fields. However, careful 

consideration of criteria weights and potential biases is essential 

for accurate application (Watanabe, 2022). 

3.3. Fuzzy Rough Set Approach 

The Fuzzy Rough Set Approach (FRSA) is a hybrid 

methodology that combines the strengths of rough set theory and 

fuzzy logic to handle uncertainty and vagueness in data analysis 

(Xiao-Yuan Jing, 2022). It is particularly effective in situations 

where the boundaries of concepts are not sharply defined, and 

attributes have overlapping memberships in multiple sets. This 

approach has gained significant attention in fields such as decision-

making, pattern recognition, data mining, and software defect 

prediction. 

1. Conceptual Foundations 

Rough set theory, introduced by Pawlak in the early 1980s, deals 

with vagueness by approximating sets using lower and upper 

bounds, capturing the indiscernibility of elements within dataogic, 

introduced by Zadeh, enhances this by addressing the imprecision 

of attributes through the use of membership functions (DAmbros, 

2020). The n of rough sets and fuzzy logic creates a framework 

where fuzzy sets are used to approximate the indiscernibility 

relations of rough sets. This combination allows the FRSA to 

model uncertainty at multiple levels: indiscernibility at the 

structural level (via rough sets) and imprecision in attribute values 

(Jaechang, 2022). 

2. Sentation 

In FRSA, the fuzzy equivalence relation RRR replaces the classical 

equivalence relation used in traditional rough sets (Rahman, 2021). 

This relation is defined by a membership function 

μR(x,y)\mu_{R}(x, y)μR(x,y) that quantifies the degree of 

similarity between elements xxx and yyy. The lower and upper 

approximations of a fuzzy set FFF are given as follows: 

Lower Approximation: 

 

Upper Approximation 

 

FRSA is extensively applied in feature selection tasks to reduce 

dimensionality without losing critical information. It identifies the 

most relevant attributes while handling overlapping and noisy data, 

making it suitable for high-dimensional datasets. The approach has 

been used in software defect prediction to enhance the 

interpretability of prediction models by combining the data-driven 

nature of rough sets with the uncertainty modeling of fuzzy logic 

(Ghotra, 2019). This improves the reliability of predictions in the 

presence of noisy or incomplete datasets. 

3.4. Multi-Attribute Decision-Making (MADM) Methods 

Multi-Attribute Decision-Making (MADM) methods are a subset 

of decision-making techniques used to evaluate and prioritize 

alternatives when multiple, often conflicting, attributes or criteria 

are involved (Menzies, 2022). These methods are particularly 

useful in scenarios where decision-makers must consider various 

quantitative and qualitative factors to achieve an optimal or near-

optimal solution. MADM methods are distinguished by the 

following features: 

i. Alternatives: A finite number of discrete options or choices. 

ii. Attributes: Multiple criteria or attributes, often with 

different units of measurement that must be evaluated for each 

alternative. 

iii. Preference Modeling: Techniques to model and quantify 

preferences to guide decision-making. 

Several MADM techniques have been developed, each with unique 

characteristics and applications. Simple Additive Weighting 

(SAW) also known as weighted linear combination, is one of the 

simplest MADM methods (Swapnil Shukla, 2019). It involves 

multiplying attribute values by their respective weights and 

summing them to compute a total score for each alternative. It is 

also suitable for straightforward decision problems where criteria 

are independent. Analytic Hierarchy Process (AHP) is another 

MADM approach that employs pairwise comparisons to establish 

criteria weights and rank alternatives. It combines qualitative and 

quantitative data, making it useful for complex problems (Balogun 

et al., 2021). AHP ensures consistency in comparisons by using a 

consistency ratio as a validation metric. 

TOPSIS on the other hand ranks alternatives by their closeness to 

an ideal solution (maximum benefit) and distance from a nadir 

solution (maximum cost). It is widely used for problems requiring 

a balance between conflicting criteria (Jiarpakdee et al., 2021). 

WPM is similar to SAW but uses the product of attribute values 

raised to the power of their weights. It is particularly effective for 

multiplicative relationships between criteria (Tantithamthavorn, 

2022). MAUT constructs a utility function to evaluate the overall 

satisfaction of decision-makers with respect to each alternative. 

This approach is ideal for problems requiring precise utility 

representation for complex attributes (Suresh Kumar et al., 2021). 

Elimination and Choice Expressing Reality (ELECTRE) is a 

family of methods based on outranking relationships between 

alternatives. It uses thresholds to determine whether one alternative 

is preferred, indifferent, or incomparable to another. Commonly 

used for group decision-making (Palma et al., 2022).from a set of 

alternatives while providing a compromise solution. This method 

emphasizes proximity to an ideal solution and can handle 

conflicting objectives effectively (Alsaeedi & Khan, 2019). 

4. Comparative Analysis of Algorithms 

To better understand the trade-offs involved in parameter reduction 

and decision-making algorithms for fuzzy soft sets, we evaluate 

them across key dimensions, such as computational efficiency, 

accuracy, and applicability. Table 1 provides a summary of this 

comparison. 
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Table 1: Summary of Comparative Analysis 

Algorithm 
Computational 

Efficiency 
Accuracy Applicability Notes 

Greedy Parameter 

Reduction 
High Moderate Large datasets 

Fast but may lack global 

optimality 

Entropy-Based 

Reduction 
Moderate High 

Systems with probabilistic 

data 

Accurate but computationally 

intensive 

Correlation-Based 

Reduction 
High Moderate Systems with redundant data Good for redundancy removal 

Hybrid Reduction 

Methods 
Moderate High 

Complex decision 

environments 
More accurate but complex 

Weighted Aggregation Moderate High 
Customizable for expert 

systems 
Requires expert knowledge 

TOPSIS High High Multi-criteria fuzzy systems Sensitive to scaling 

Fuzzy Rough Set Low High 
High-uncertainty 

environments 

Effective but computationally 

heavy 

MADM Methods Moderate High 
Structured decision 

environments 
Complex for large systems 

According to the table, high computational efficiency in the greedy parameter reduction algorithms makes it suitable for large datasets. Moderate 

accuracy was presented due to its heuristic nature, which may not guarantee the best global solution. In terms of applicability, it is ideal for quick 

reductions in large datasets. Entropy-Based Reduction is a moderate efficiency is recorded in entropy-based reduction approach, as the 

calculations are more computationally demanding. High accuracy was recorded, making it suitable for systems with probabilistic data. This 

approach is most effective in applicability when dealing with scenarios where precision is crucial. For correlation-based reduction, high 

efficiency was recorded in the approach due to the straightforward removal of redundant data. While, Moderate accuracy since it focuses on 

redundancy rather than overall data significance. It is more Applicable for systems where data redundancy is a concern. 

Figure 3 presents a bar chart comparing computational efficiency across different algorithms and a bar chart comparing accuracy across different 

algorithms. 

 

Figure 3: Computational Efficiency and Accuracy of Algorithms 
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The bar charts provide a visual comparison of the computational 

efficiency and accuracy of different data reduction algorithms. 

From the bar charts following has been deduced. 

5. Conclusion 

This paper presents a structured analysis of existing algorithms for 

parameter reduction and decision-making in fuzzy soft sets. While 

many methods provide efficient and accurate solutions, the choice 

of algorithm often depends on the specific context, data 

characteristics, and computational constraints. Our findings 

indicate that while parameter reduction algorithms like hybrid 

methods balance accuracy with efficiency, decision-making 

methods like TOPSIS and fuzzy rough sets excel in handling 

uncertainty and complex criteria. Further research in adaptive and 

hybrid models may lead to more efficient algorithms suitable for a 

broader range of applications, particularly in real-time decision 

support systems. 
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